Abstract

Searches are performed for nonresonant and resonant di-Higgs boson production in the bb¯γγ final state. The dataset used corresponds to an integrated luminosity of 139 fb−1 of proton–proton collisions at a center-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. No excess above the expected background is found and upper limits on the di-Higgs boson production cross sections are set. A 95% confidence-level upper limit of 4.2 times the cross section predicted by the Standard Model is set on pp→HH nonresonant production, where the expected limit is 5.7 times the Standard Model predicted value. The expected constraints are obtained for a background hypothesis excluding pp→HH production. The observed (expected) constraints on the Higgs boson trilinear coupling modifier κλ are determined to be [−1.5,6.7] ([−2.4,7.7]) at 95% confidence level, where the expected constraints on κλ are obtained excluding pp→HH production from the background hypothesis. For resonant production of a new hypothetical scalar particle X (X→HH→bb¯γγ), limits on the cross section for pp→X→HH are presented in the narrow-width approximation as a function of mX in the range 251 GeV≤mX≤1000 GeV. The observed (expected) limits on the cross section for pp→X→HH range from 640 fb to 44 fb (391 fb to 46 fb) over the considered mass range.8 MoreReceived 23 December 2021Accepted 1 August 2022DOI:https://doi.org/10.1103/PhysRevD.106.052001Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.© 2022 CERN, for the ATLAS CollaborationPhysics Subject Headings (PhySH)Research AreasExtensions of Higgs sectorHadron-hadron interactionsPhysical SystemsHiggs bosonsParticles & Fields

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.