Abstract

A search is presented for heavy bosons decaying to Z(νν¯)V(qq¯′), where V can be a W or a Z boson. A sample of proton-proton collision data at s=13 TeV was collected by the CMS experiment during 2016–2018. The data correspond to an integrated luminosity of 137 fb−1. The event categorization is based on the presence of high-momentum jets in the forward region to identify production through weak vector boson fusion. Additional categorization uses jet substructure techniques and the presence of large missing transverse momentum to identify W and Z bosons decaying to quarks and neutrinos, respectively. The dominant standard model backgrounds are estimated using data taken from control regions. The results are interpreted in terms of radion, W′ boson, and graviton models, under the assumption that these bosons are produced via gluon-gluon fusion, Drell–Yan, or weak vector boson fusion processes. No evidence is found for physics beyond the standard model. Upper limits are set at 95% confidence level on various types of hypothetical new bosons. Observed (expected) exclusion limits on the masses of these bosons range from 1.2 to 4.0 (1.1 to 3.7) TeV.3 MoreReceived 16 September 2021Accepted 7 June 2022DOI:https://doi.org/10.1103/PhysRevD.106.012004Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.© 2022 CERN, for the CMS CollaborationPhysics Subject Headings (PhySH)Physical SystemsHypothetical gauge bosonsTechniquesHadron collidersParticles & Fields

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call