Abstract

ABSTRACTFor twenty years we searched to understand the Staebler-Wronski effect (SWE). New results continue to emerge which invalidate prior interpretations. Recent evidence shows that the SWE is not associated with impurities. Long-range hydrogen diffusion is ruled out because the SWE occurs with comparable efficiency between 400K and the lowest temperatures. Nonradiative geminate recombinations might be important since high fields reduce the SWE significantly. It disappears when the bandgap or the photon energy falls below a critical value. The creation of a metastable density of dangling bond defects has been considered to be its sole manifestation. However, there is mounting evidence for light-induced structural changes which extend throughout the material. The weak bond breaking model emerges as the only viable explanation of the SWE if the expected spatial correlation between defects and hydrogen is destroyed by subsequent recombination events. The SWE is reduced by a favorable microstructure and low hydrogen content. It is suggested that defect pairs have larger recombination coefficients than isolated defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.