Abstract

AbstractWe searched for the $\alpha$ condensed state in $^{13}$C by measuring the $\alpha$ inelastic scattering at $E_\alpha = 388$ MeV at forward angles including 0$^\circ$. We performed a distorted-wave Born approximation calculation with the single-folding potential and multipole decomposition analysis to determine the isoscalar transition strengths in $^{13}$C. We found a bump structure around $E_x = 12.5$ MeV due to the isoscalar monopole ($IS0$) transition. A peak-fit analysis suggested that this bump consisted of several $1/2^-$ states. We propose that this bump is due to the mirror state of the 13.5 MeV state in $^{13}$N, which dominantly decays to the $\alpha$ condensed state in $^{12}$C. It was speculated that the $1/2^-$ states around $E_x = 12.5$ MeV were candidates for the $\alpha$ condensed state, but the $3\alpha + n$ orthogonality condition model suggests that the $\alpha$ condensed state is unlikely to emerge as the negative parity states. We also found two $1/2^+$ or $3/2^+$ states at $E_x = 14.5$ and 16.1 MeV excited with the isoscalar dipole ($IS1$) strengths. We suggest that the 16.1 MeV state is a possible candidate for the $\alpha$ condensed state predicted by the cluster model calculations on the basis of the good correspondence between the experimental and calculated level structures. However, the theoretical $IS1$ transition strength for this state is significantly smaller than the measured value. Further experimental information is strongly desired to establish the $\alpha$ condensed state in $^{13}$C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.