Abstract

A general method for reliability evaluation of multistate network is using minimal path vectors. A minimal path (MP) vector to system state d is called a d-MP. Most reported works on generating d-MPs are for a particular d value. However, if all d-MPs for all possible integer d values are required, we need to call such methods multiple times with respect to all d values. A more efficient method is desirable to generate all d-MPs. In this paper, we develop a recursive algorithm based on breadth-first search to search for all the d-MPs for all possible d values. The relationships among d-MPs for different d levels are revealed. Each d-MP candidate can be generated by a combination of one (d-1)-MP and the vector form of one binary minimal path. Thus, we can use binary MPs as building blocks to generate 2-MP candidates, and use 2-MPs and binary MPs as building blocks to generate 3-MP candidates … and so forth. When the d-MPs with respect to the maximum d value have been found, all the d-MPs for all possible d values are obtained. A heuristic for pre-processing the MPs is proposed to improve the efficiency of the algorithm. Through computational experiments, it is found that the proposed algorithm is more efficient than existing algorithms for finding all d-MPs for all possible d values. In addition, we show that the proposed algorithm can also be used to generate a subset of d-MPs for all or some d values given a subset of MPs. The generated subset of d-MPs can be used for lower reliability bound evaluation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.