Abstract

Adaptive polarization mode dispersion (PMD) compensation is required for the speed-up and advancement of the present optical communications. The combination of a tunable PMD compensator and its adaptive control method achieves adaptive PMD compensation. In this paper, we report an effective search control algorithm for the feedback control of the PMD compensator. The algorithm is based on the hill-climbing method. However, the step size changes randomly to prevent the convergence from being trapped at a local maximum or a flat, unlike the conventional hill-climbing method. The randomness depends on the Gaussian probability density functions. We conducted transmission simulations at 160 Gb/s and the results show that the proposed method provides more optimal compensator control than the conventional hill-climbing method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call