Abstract

AbstractSubducting seamounts are recognized as one of the key features influencing megathrust earthquakes. However, whether they trigger or arrest ruptures remains debated. Here, we use analog models to study the influence of a single seamount on megathrust earthquakes, separating the effect of topography from that of friction. Four different model configurations have been developed (i.e., flat interface, high and low friction seamount, low friction patch). In our models, the seamount reduces recurrence time, interseismic coupling, and fault strength, suggesting that it acts as a barrier: 80% of the ruptures concentrate in flat regions that surround the seamount and only smaller magnitude earthquakes nucleate above it. The low‐friction zone, which mimics the fluid accumulation or the establishment of fracture systems in natural cases, seems to be the most efficient in arresting rupture propagation in our experimental setting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.