Abstract

AbstractStatistical postprocessing is applied in operational forecasting to correct systematic errors of numerical weather prediction models (NWP) and to automatically produce calibrated local forecasts for end-users. Postprocessing is particularly relevant in complex terrain, where even state-of-the-art high-resolution NWP systems cannot resolve many of the small-scale processes shaping local weather conditions. In addition, statistical postprocessing can also be used to combine forecasts from multiple NWP systems. Here we assess an ensemble model output statistics (EMOS) approach to produce seamless temperature forecasts based on a combination of short-term ensemble forecasts from a convection-permitting limited-area ensemble and a medium-range global ensemble forecasting model. We quantify the benefit of this approach compared to only postprocessing the high-resolution NWP. The multimodel EMOS approach (“mixed EMOS”) is able to improve forecasts by 30% with respect to direct model output from the high-resolution NWP. A detailed evaluation of mixed EMOS reveals that it outperforms either one of the single-model EMOS versions by 8%–12%. Temperature forecasts at valley locations profit in particular from the model combination. All forecast variants perform worst in winter (DJF); however, calibration and model combination improves forecast quality substantially. In addition to increasing skill as compared to single-model postprocessing, it also enables us to seamlessly combine multiple forecast sources with different time horizons (and horizontal resolutions) and thereby consolidates short-term to medium-range forecasting time horizons in one product without any user-relevant discontinuity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.