Abstract

A ternary carbide Dy3Si2C2 coating was fabricated on the surface of SiC through a molten salt technique. Using the Dy3Si2C2 coating as the joining interlayer, seamless joining of SiC ceramic was achieved at temperature as low as 1500 °C. Phase diagram calculation indicates that seamless joining was achieved by the formation of liquid phase at the interface between Dy3Si2C2 and SiC, which was squeezed out under pressure and continuously consumed by the joining interlayer. This work implies the great potential of the family of ternary rare-earth metal carbide Re3Si2C2 (Re = Y, La-Nd) as the sacrificial interlayer for high-quality SiC joining.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call