Abstract

Considering various unstable factors when the large-diameter spindle operates at a high speed, such as eccentricity, centrifugal force, etc., the ordinary ferrofluid seal structures will show poor sealing performance. This paper proposes an axial-radial bidirectional ferrofluid seal structure with radial oblique teeth to improve the sealing performance. The pressure resistance of the radial ferrofluid seal structure in the magnetic circuit is theoretically analyzed. The magnetic flux distribution characteristic in the gap of the oblique teeth is studied by magnetic field simulation. According to the analysis results of the magnetic induction intensity, to obtain the larger theoretical pressure resistance, the optimal angle of oblique teeth is 77.87°, 64.28° and 62.81° under the radial seal structure with different gaps of 0.1 mm, 0.15 mm and 0.2 mm, respectively. In addition, simulation analysis is carried out to obtain the fluid pressure and velocity distribution of the radial ferrofluid seal structure with different oblique teeth angles. When the oblique teeth angle is small, the pressure drops and gas flow speeds in the ferrofluid area are all lower, and the pressure resistance is higher.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call