Abstract

The flanges of 10 MW high temperature gas-cooled reactor (HTR-10) pressure vessel play an important role in sealing the primary coolant of Helium. They are bolt-connected with a metallic O-ring and a welded Ω-ring. An elastic–plastic nonlinear analysis was performed to evaluate the stress and deformation of the contact flanges with the finite element software of MSC MARC 2000. The multi-step loading process was employed to simulate the processes of pre-tightening and pressurizing of the HTR-10 pressure vessel. The structural effects of the flanges on the opening and the shifting of the HTR-10 pressure vessel flanges at the O-ring position were studied to determine the flange height and the head closure thickness. The good sealing performance of the O-ring and the Ω-ring was verified both numerically and experimentally. The finite element model analysis results compared well with the hydraulic test of the HTR-10 pressure vessel. The results show that the flanges can meet the strength requirement and that the O-ring and the Ω-ring can effectively seal the HTR-10 pressure vessel during both pre-tightening and pressurizing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.