Abstract

IntroductionSyngnathids (seahorses, pipefishes and seadragons) are among the few vertebrates that display male pregnancy. During seahorse pregnancy, males incubate developing embryos embedded in a placenta within a fleshy brood pouch, before expelling fully developed neonates at parturition. The mechanisms underpinning seahorse parturition are poorly understood. MethodsWe examined the morphology of the brood pouch using microcomputed tomography and histological techniques, in combination with physiological assays, to examine how male pot-bellied seahorses (Hippocampus abdominalis) control labour. In female-pregnant vertebrates, nonapeptide hormones (such as vasopressin- and oxytocin-like hormones) produce contractions of gestational smooth muscle to produce labour. ResultsHistological analysis of the seahorse brood pouch reveals only scattered small smooth muscle bundles in the brood pouch, and in-vitro application of isotocin (a teleost nonapeptide hormone) to the brood pouch do not produce measurable muscle contractions. Micro-computed tomography shows differences in size and orientation of the anal fin assembly between male and female pot-bellied seahorses, and histological analysis reveals large skeletal muscle bundles attached to the anal fin bones at the male brood pouch opening. DiscussionWe conclude that seahorse parturition may be facilitated by contraction of these muscles, which, in combination with body movements, serves to gape open the pouch and expel the neonates. Future biomechanical studies are needed to test this hypothesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call