Abstract
Abstract Gas hydrate quantification using acoustic data requires proper knowledge of the mineralogy of their host sediment. In this paper, a petrophysical model allowing GH quantification at sites where mineralogy profiles are absent is proposed. This approach is applied to a high gas flux pockmark system in the Gulf of Guinea where in-situ acoustic and geotechnical measurements together with core measurements could have been correlated and tied to seismic data. Projections of the in-situ measurements on seismic profiles have shown that the study area not only accommodates zones of shallow and dense GH; but also zones where solid hydrate and free gas coexist as well as pockets of free gas. Further analysis of several seismic profiles has allowed illustrating the detailed GH occurrence zone within the study area, estimate its volume and its occupancy ratio of the pockmark. Correlations between GH content and 3D bathymetry sections have allowed to draw a link between different GH contents and the morphology of the pockmark, which also shares similarities with the morphology of the GH occurrence zone it accommodates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.