Abstract

A simple conceptual formulation to compute seabed shear stress due to asymmetric and skewed waves is presented. This formulation generalizes the sinusoidal wave case and uses a variable friction factor to describe the physics of the boundary layer and to parameterize the effects of wave shape. Predictions of bed shear stresses agree with numerical computations using a standard boundary layer model with a k– ε turbulence closure. The bed shear stress formulation is combined with a Meyer-Peter and Müller-type formula to predict sheet flow bedload transport under asymmetric and skewed waves for a horizontal or sloping bed. The predictions agree with oscillatory water tunnel measurements from the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call