Abstract

The deep seafloor is teeming with life, most of which remains poorly known to science. It also constitutes an important reserve of natural resources, particularly minerals, that mining companies will start harvesting in the next few years (Nat Rev Earth Environ, 1, 2020, 158). In this context, broad biodiversity assessments of deep-sea ecosystems are urgently needed to establish a baseline prior to mining. However, significant gaps in our taxonomic knowledge and the high cost of sampling in the deep sea limit the effectiveness of conventional morphology-based surveys. In this issue of Molecular Ecology, Laroche et al. (Mol Ecol, 2020) capitalize on high throughput molecular methods to conduct one of the most detailed and rigorous surveys of the composition and biogeography of deep-seafloor metazoan communities to date. The authors show that deep seamounts in the Clarion Clipperton Zone are inhabited by rich metazoan communities that are distinct from those of the surrounding abyssal plains. These results have important conservation implications: if communities on deep seamounts were to persist after large-scale industrial mining operations on the surrounding plains, the seamounts would not serve as appropriate reservoirs to repopulate impacted areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.