Abstract

This study uses three acoustic instruments (different in their operating frequencies, 13, 3.5, and 6–10 kHz, and deployment type, hull-mounted, surface-towed and deep-towed) to investigate and characterize the acoustic response of seafloor NE of Oman in a frequency-independent manner. High-resolution control was achieved by having selected areas of our acoustic transects ground-truthed by sampling and/or sea-floor photography. On the regional scale, the greatest degree of change in backscatter amplitude was correlated with major changes of seabed morphology and lithology. However, small-scale roughness had the biggest effect on amplitude on the local scale, i.e. within each area of specific seafloor type. The study also shows that seafloor reflection amplitude changes are far more easily detected by deep-towed instrument than by surface-towed or hull-mounted systems. Whilst there are significant changes in bioturbation types and density along the transects, the suite of instruments deployed was not able to pick up the effect of the bioturbation on acoustic signals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.