Abstract

Due to its special Z-shaped layered structure, Na2Ti3O7 has great potential as an anode material for lithium-ion battery application. However, the poor electrical conductivity and cycle life have seriously affected its application in practice. In this paper, we prepared a sea urchin shaped Na2Ti3O7 material by a simple hydrothermal method. This special morphology allows the material to have a large specific surface area, which can better contact with the electrolyte and increase the active site number. The half-cells assembled with sea urchin-like Na2Ti3O7 show excellent cycling performance and good rate performance. After 1000 cycles at a 1 C rate, the specific capacity of NTO maintains at 70%. Even at a 5 C rate, NTO-2 delivers a discharge capacity of 71 mAh g−1 after 1000 cycles. The method proposed can be extended to other new anode materials to boost their electrochemical performances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.