Abstract

Side-scan sonar records and radar images of the Lister Tief in the German Bight of the North Sea have been analysed. The radar data show signatures on the sea surface which are related to irregularities in the submarine seabed. Some side-scan and radar data from the test area were taken at different dates, but at the same tidal phase and under comparable weather conditions. Existing one-dimensional models of the radar imaging mechanism predict extremes in radar backscatter above maximum slope regions of subaqueous dunes. However, the acoustic data obtained during the ebb tidal phase do not always show an enhanced background noise and backscattering strength modulation directly above maximum slopes of the dunes. A large variation of the position of background noise has been observed. The experimental acoustic data contradict the results of existing radar imaging models. The sonographs showed that regions with increased background noise at close range (<5 m) are often associated with signatures of enhanced backscatter at ranges farther away (<40 m) or at lower grazing angles (<30°). We conclude that the modulation of scattering strength can be attributed to regions of air bubbles generated by turbulence and breaking water waves. Simulations of the radar cross-section modulation above the large slopes of dunes are too large to remain within the bounds of the weak hydrodynamic interaction theory in the relaxation time approximation. Therefore, this theory is not applicable in the sea area of the Lister Tief. Furthermore, the hydrodynamic mechanism of standing waves or stationary surface deformations associated with dunes is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call