Abstract

Onboard sea state estimation is relevant for evaluation of ship operations at sea. Means to obtain the sea state at a fixed position include a traditional wave rider buoy, where motion measurements of the buoy are processed to give the (directional) wave spectrum. The analogy between a ship and a buoy is clear, although the ship is moving with a forward speed and, in general, is characterised by a more complex underwater geometry. Thus, it is possible to obtain an estimate of the wave spectrum at the location of an advancing ship by processing its wave-induced responses similar to the situation of a traditional wave rider buoy. The paper studies the ‘wave buoy analogy’, and a large set of full-scale motion measurements is considered. It is shown that the wave buoy analogy gives fairly accurate estimates of integrated sea state parameters when compared to corresponding estimates from real wave rider buoys. The complete distribution of wave energy is also compared, however, with poorer agreement. Finally, it is shown that the wave buoy analogy, for the studied data, provides, on average, slightly better sea state estimates than a wave radar system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.