Abstract
Layer jamming and positive pressure jamming demonstrated great potential in soft robotic applications. The combination of these technologies can increase the performance of variable stiffness-oriented designs. Inspired by the shape of sea shell radial ribs, we introduce a planar lightweight device that can be easily adapted to different application scenarios, providing both significant stiffness variation and high load-bearing capabilities. Exploiting the ease of the system in terms of design and manufacturing, we tested the device with a different number of layers. It shows higher performances than standard layer jamming systems: in particular, the 1 layer per side version (7.5g) shows a variable stiffness ratio of 64:1 and a force required to reach a 10 mm deflection equal to 19N. The same values for the 5 layers per side version (17.2g) are 42.5:1 and 62N. These values are in line with the most promising innovative approaches reported in the literature on layer jamming. In addition, the presented results allow making a comparison between the introduced device and the biological counterpart in terms of performance, showing the validity of sea shells as a bioinspiration source for variable stiffness systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.