Abstract
The status of kelp forests and their vulnerability to climate change are of global significance. As the foundation for productive and extensive ecosystems, understanding long-term kelp forest trends is critical to coastal ecosystem management, climate resiliency, and restoration programs. In this study, we curate historical US government kelp canopy inventories, develop methods to compare them with contemporary surveys, and use a machine learning framework to evaluate and rank the drivers of change for California kelp forests over the last century. Historical surveys documented Macrocystis and Nereocystis kelp forests covered approximately 120.4 km2 in 1910–1912, which is only slightly above surveys in 2014–2016 (112.0 km2). These statewide comparisons, however, mask dramatic regional changes with increases in Central California (+57.6%, +19.7 km2) and losses along the Northern (-63.0%, -8.1 km2), and Southern (-52.1%, -18.3 km2) mainland coastlines. Random Forest models rank sea otter (Enhydra lutris nereis) population density as the primary driver of kelp changes, with benthic substrate, extreme heat, and high annual variation in primary productivity also significant. This century-scale perspective identifies dramatically different outcomes for California’s kelp forests, providing a blueprint for nature-based solutions that enhance coastal resilience to climate change.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.