Abstract
The marshlands of the Meadowlands of New Jersey are valuable wetland ecosystems in a highly developed urban area and provide a natural habitat to more than 285 species of birds, a great variety of fishes, and many other living organisms. It is not clear if these ecosystems and their associated ecological services will persist under conditions of accelerated sea level rise (SLR), in geography where space for a landward retreat of marshlands is limited. In this study, we used the deep rod surface elevation table method and feldspar marker horizons to measure surface elevation change and vertical accretion rate in five marshland sites over 11 years. The controlling parameters of the accretion rate were explored. The results showed that sediments were not limited for vertical accretion. About 16% of the total suspended solids reaching the marsh via the tide was trapped by the marsh surface. Hydraulic duty alone cannot explain differences in deposition rates between low and high marsh. Precipitation, snow accumulation, and sea surge from storms were the main drivers influencing subsidence. The overall subsidence rate was 1.5 ± 1.3 mm/year. All sites combined showed increases in surface elevation of 4.0 ± 0.7 mm/year. This rate of increase is not enough to keep up with the 8 mm/year SLR prediction. There is a 50% chance that in 80 years, 7% of current marshlands will be underwater or will convert to unvegetated mudflats, and most high marsh habitats will disappear.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.