Abstract

After the first emergence following deglaciation, relative sea level rose by 10 m in western Norway and culminated late in the Younger Dryas (YD). The relative sea-level history, reconstructed by dating deposits in isolation basins, shows a sea-level low-stand between ∼13 640 and 13 080 cal yr BP, a 10 m sea-level rise between ∼13 080 and 11 790 cal yr BP and a sea-level high-stand between ∼11 790 and 11 550 cal yr BP. Shortly after the YD/Holocene boundary, sea level fell abruptly by ∼37 m. The shorelines formed during the sea-level low-stand in the mid-Allerød and during the sea-level high-stand in the YD have almost parallel tilts with a gradient of ∼1.3 m km −1, indicating that hardly any isostatic movement has taken place during this period of sea-level rise. We conclude that the transgression was caused by the major re-advance of the Scandinavian Ice Sheet that took place in western Norway during the Lateglacial. The extra ice load halted the isostatic uplift and elevated the geoid due to the increased gravitational attraction on the sea. Our results show that the crust responded to the increased load well before the YD (starting ∼12 900 cal yr BP), with a sea-level low-stand at 13 640 cal yr BP and the subsequent YD transgression starting at 13 080 cal yr BP. Thus, we conclude that the so-called YD ice-sheet advance in western Norway started during the Allerød, possibly more than 600 years before the Allerød/YD transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call