Abstract

Abstract During the Paleocene–Eocene Thermal Maximum (PETM, ~56 Ma), a large, negative carbon-isotope excursion (CIE) testifies to a massive perturbation of the global carbon cycle. Shallow-marine settings are crucial to understand the environmental and ecological changes associated with the PETM and the connection between continental and open-marine environments. Detailed sedimentological, paleontological, and geochemical analysis of a quasi-continuous succession of shallow-marine carbonates in the Tethys Himalaya of southern Tibet indicates that a relative rise in sea level coincided with PETM onset, continued through PETM core, and terminated with a regression at PETM recovery. At PETM onset, corresponding to the SBZ4/SBZ5 boundary, no obvious impact on biota and specifically on larger benthic foraminifera (LBF) is observed. The major biotic change occurs later on at PETM recovery, corresponding to the SBZ5/SBZ6 boundary. Our data suggest that relative sea level, rather than temperature, exerted the main control on benthic biota during the PETM. Although the δ13Corg values of organic matter are similar in the deep sea and shallow-marine continental margins, the δ13Ccarb value of bulk carbonates are significantly 13C-depleted, which we attribute to environmental change driven by relative sea-level fluctuations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.