Abstract

In this article, the retrieval of a sea ice small-scale surface roughness parameter using a proposed model is investigated at several Advanced Microwave Scanning Radiometer Earth Observing System (AMSR-E) channels (6.9, 10.7, and 89 GHz) over the Arctic oceans. The AMSR-E 89 GHz observations with a spatial resolution of approximately 6 km × 4 km, nearly three times the resolution of the currently operational radiometer SSM/I 85 GHz (15 km × 13 km), are fully exploited to retrieve the total and multiyear (MY) ice concentrations through the utilization of the ARTIST sea ice (ASI) and polarization corrected temperature (PCT) algorithms, respectively. To improve the accuracy of the retrieved ice concentration, a tie-point adaption scheme was used to obtain daily adaptable tie-points for the two ice concentration algorithms. A sea ice small-scale roughness parameter was then calculated with the model proposed by Hong for the above-mentioned three frequencies. At lower frequencies, such as 6.9 and 10.7 GHz, roughness estimates are available for all ice types. However, estimates at 89 GHz are physically illegitimate over the wintertime MY ice cover. The model estimates at the two low frequencies were further studied over a protracted period (2003–2010). The annual time series of the averaged estimate over the Arctic sea ice were found to exhibit a slightly decreasing trend (−2.1 × 10−3 and −1.9 × 10−3 cm year−1 for 6.9 and 10.7 GHz, respectively). Meanwhile, the winter time series showed an increasing trend whereas the summer time series showed a remarkably decreasing trend, which indicates more serious melting activity occurring over the Arctic ice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.