Abstract

Underwater images taken from deepwater carbonate-mud mounds located along the continental margin of the Gulf of Cadiz (eastern Central Atlantic) have identified a great variety of hydrocarbon seep-related geomorphic features that exist on the sea floor. An extensive photographic survey was made along the Guadalquivir Diapiric Ridge, after detailed examination of the main mounds identified on previous swath bathymetry coverage, high-resolution seismic imagery, dredge and gravity core data. Recognised fluid-induced geomorphic features include seep precipitates, named here generically as hydrocarbon-derived authigenic carbonates (HDACs), mud-breccia flows and piping/rills, at scales ranging from metres to centimetres. Based on the viscosity, texture, morphology, and the nature of observed features, we have categorized the geomorphic seeps into the following types: mud-breccia flows and liquid seepages, which can be grouped as highly viscous and viscous mud-breccia flows, gassy mud-breccia flows, and small-scale piping/rills; HDACs types, including massive crusts, “honeycombed” carbonate crusts, nodular aggregated crusts, steeply dipping to vertical slabs, and pipe-like formations (chimneys). These widespread geomorphic features observed along the carbonate-mud mounds reveal alternate periods of (1) active mud-flow extrusion (mud-volcano formation), (2) reduced seepage activity, with the formation of extensive carbonate features by chemosynthetic organisms, and (3) formation of hardgrounds and colonisation by non-chemosynthetic organisms such as deepwater corals (e.g. Lophelia pertusa, Madrepora oculata). The formation of large amounts of HDACs is related to the microbially mediated oxidation of hydrocarbon fluids (biogenic and thermogenic) during periods of slower fluid venting. This has led to the hypothesis that these carbonate-mud mounds could be built up by alternating episodes of varying fluid-venting rates, with peaks that may have been triggered by tectonic events (e.g. high-seismicity periods) and slower rates controlled by climate/oceanographic factors (e.g. glacial to interglacial climatic transitions, increasing shallow subsurface hydrate formation, and sealing of sea-floor fluid venting).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call