Abstract

A subclass of SEA (sea urchin sperm protein, enterokinase, and agrin) domain proteins undergoes autoproteolysis between glycine and serine in a conserved G−1S+1VVV motif to generate stable heterodimers. Autoproteolysis has been suggested to involve only the intramolecular catalytic action of the conserved serine hydroxyl in combination with conformational strain of the glycine–serine peptide bond. We conducted a number of experiments and simulations on the SEA domain from the MUC1 mucin to test this mechanism. Alanine-scanning mutagenesis of polar residues in the vicinity of the cleavage site demonstrates that only the nucleophile at position +1 is required for efficient proteolysis. Molecular modeling shows that an uncleaved trans peptide is incompatible with the native heterodimeric structure, resulting in disruption of secondary structure elements and distortion of the scissile peptide bond. Insertion of glycine residues (to obtain GnG−1S+1VVV motifs) appears to relieve strain, and autoproteolysis is 100 times slower in a 1G (n=1) mutant and not measurable in 2G and 4G mutants. Removal of the catalytic serine hydroxyl hampers cleavage considerably, but measurable autoproteolysis of this S1098A mutant still proceeds in the presence of strain alone. The uncleaved SEA precursor populates interconverting partially folded conformations, and autoproteolysis coincides with adoption of proper β-sheet secondary structure and completed folding. Molecular dynamics simulations of the precursor show that the serine hydroxyl and the preceding glycine carbonyl carbon can be in van der Waals contact at the same time as the scissile peptide bond becomes strained. These observations are all consistent with autoproteolysis accelerated by N→O acyl shift and conformational strain imposed upon protein folding in a reaction for which the free-energy barrier is decreased by substrate destabilization rather than by transition-state stabilization. The energetics of this coupled folding and autoproteolysis mechanism is accounted for in an accompanying article.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call