Abstract

The problem of strong sea clutter, e.g., sea spikes, may bring in low signal-to-clutter ratio (SCR) and cause great interference to radar marine target detection. However, the sea clutter suppression ability of current algorithms is limited with poor generalization under complex marine environment. In this letter, a novel sea clutter suppression generative adversarial network (SCS-GAN) is designed and employed for marine radar plan-position indicator (PPI) images detection. The SCS-GAN is based on residual networks and attention module, which includes residual attention generator (RAG) and sea clutter discriminator (SCD). In order to expand the data sets and improve generalization ability, clutter-free data set A, simulated sea clutter data set B (containing five types of sea clutter distributions), and actual sea clutter data set C are constructed by means of simulation and acquisition of real radar returns. At last, the parameter, i.e., clutter suppression ratio (CSR) is designed for evaluating the sea clutter suppression performances of the proposed method and other denoising and clutter suppression methods including CBM3D, denoising convolutional neural network (DnCNN), FFDNet, and Pix2pix. After testing with actual data, it is proved that the SCS-GAN has faster clutter removal speed, stronger generalization ability, and at the same time marine targets in images are remained completely.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call