Abstract

Abstract The Red Sea (RS) has a high evaporation rate, exceeding 2 m of water per year. The water vapor is transported from the shorelines by sea breezes as far as 200 km landward. Relative humidity in the vicinity of the RS exceeds 80% in summer. Nevertheless, precipitation is scarce in most of the Arabian RS coastal plain. In this work we use the Weather Research and Forecasting (WRF) regional model to assess how deliberate changes (geoengineering) in the surface albedo or conversion of bare land to wide-leaf forests over a vast coastal plain region affect precipitation over the Arabian RS coast. Our simulations show that geoengineering of land surface characteristics perturbs coastal circulation; alters temperature, moisture, and momentum exchange between the land surface and atmosphere; and changes the breeze intensity, cloud cover, and eventually the amount of precipitation. We find that extended afforestation and increased surface albedo are not effective in triggering rainfall over the RS coastal plains. Conversely, decreasing surface albedo to 0.2, assuming installation of solar panels over the coastal plains, increases surface air temperature by 1–2 K, strengthens horizontal surface temperature differences between sea and land, intensifies breezes, increases water vapor mixing ratio in the boundary layer above 3 km by about 0.5 g kg−1, enhances vertical mixing within the planetary boundary layer, and generates 1.5 Gt of extra rainwater, equivalent to the annual consumption of five million people. Thus, this form of regional land surface geoengineering, along with advanced methods of collection and underground storage of freshwater, provides a feasible solution to mitigation of the existing water crisis in the arid coastal regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call