Abstract

In order to treat selenium pollution, the study presents the use of potassium ferrate (K2FeO4) as an environmentally friendly agent for in situ removal of Se(IV) from aqueous media. Batch experiments were carried out to evaluate the influences of various factors including dosage of K2FeO4, ex-situ and in-situ adsorption, initial pH, and adsorption isotherms. The results showed that increasing dosage of K2FeO4 benefited the removal of total selenium with the efficiency up to 97.0% and Se(IV) removal significantly depended on pH, and as the pH increases, the decrease in Se(IV) adsorption efficiency is a general trend of pH dependence. The X-ray powder diffraction, Fourier transformed infrared spectrometer and high-resolution X-ray photoelectron spectroscopy analysis indicated that Se(IV) was removed from the aqueous solution by adsorbing on the surface of the decomposition products of K2FeO4 which are ferric oxide nanoparticles, and the selenium adsorbed on the generated ferric oxide nanoparticles existed in the forms of Se(IV) and Se(VI). Se(IV) and Se(VI) were adsorbed to the decomposition products of K2FeO4 by forming an inner-sphere complexes and an outer-sphere complexes, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call