Abstract

Bipolar conduction in Bi-Te-based alloys is a critical barrier to high conversion efficiency in thermoelectric power generation applications. Herein, we investigate the effect of compositional tuning of Te/Se ratio on bipolar conduction in n-type Cu0.008Bi2(Te,Se)3 alloys. Based on the two-band model and Callaway model, we found that electronic and thermal transports of minority carriers (holes) were gradually decreased with an increase in Se content. The high-temperature power factor of Se-rich Cu0.008Bi2Te2.1Se0.9 was higher in value compared to reference Cu0.008Bi2Te2.7Se0.3 due to the weighted mobility ratio increase, and its bipolar thermal conductivity was significantly reduced simultaneously. As a result, a peak figure of merit (zT) of 0.92 was obtained at 440 K in Cu0.008Bi2Te2.1Se0.9.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.