Abstract

Rechargeable magnesium batteries (RMBs) have gradually got attention due to the high theoretical capacity, low cost and high security. However, the lack of suitable cathode materials has been a major obstacle to the development of RMBs. Transition metal sulfides (TMSs) have been studied extensively because of their high theoretical specific capacity and other advantages. However, the diffusion rate of Mg2+ in TMSs is slow and side reactions are easy to occur. In this work, soft anion doping strategy was adopted at Co4S3 cathode material. After doping the appropriate content of Se, it showed the specific capacity of 248 mAh g-1 at a current density of 100 mA g-1. The mechanism of magnesium storage was investigated by ex-situ technique. This work laid a foundation for researching cobalt-based sulfide in cathode materials of RMBs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.