Abstract
Ni or Co is commonly required in efficient electrocatalysts for oxygen evolution reaction (OER). Although Fe is much more abundant and cheaper, full-Fe or Fe-rich catalysts suffer from insufficient activity. Herein, we discover that Se-doping can drastically promote OER on FeOOH and develop a facile on-site electrochemical activation strategy for achieving such a Se-doped FeOOH electrode via an FeSe precatalyst. Theoretical analysis and systematic experiments prove that Se-doping enables FeOOH as an efficient and low-cost OER electrocatalyst. By optimizing the electrode structure, an industrial-level OER current output of 500 mA cm-2 is secured at a low overpotential of 348 mV. The application of such an Fe-rich OER electrode in a practical solar-driven water splitting system demonstrates a high and stable solar-to-hydrogen efficiency of 18.55%, making the strategy promising for exploring new cost-effective and highly active electrocatalysts for clean hydrogen production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.