Abstract
We introduce adversarial learning methods for data-driven generative modeling of dynamics of nth-order stochastic systems. Our approach builds on Generative Adversarial Networks (GANs) with generative model classes based on stable m-step stochastic numerical integrators. From observations of trajectory samples, we introduce methods for learning long-time predictors and stable representations of the dynamics. Our approaches use discriminators based on Maximum Mean Discrepancy (MMD), training protocols using both conditional and marginal distributions, and methods for learning dynamic responses over different time-scales. We show how our approaches can be used for modeling physical systems to learn force-laws, damping coefficients, and noise-related parameters. Our adversarial learning approaches provide methods for obtaining stable generative models for dynamic tasks including long-time prediction and developing simulations for stochastic systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.