Abstract

We study the internal gradients of stellar population properties within $1.5\;R_{\rm e}$ for a representative sample of 721 galaxies with stellar masses ranging between $10^{9}\;M_{\odot}$ to $10^{11.5}\;M_{\odot}$ from the SDSS-IV MaNGA IFU survey. Through the use of our full spectral fitting code FIREFLY, we derive light and mass-weighted stellar population properties and their radial gradients, as well as full star formation and metal enrichment histories. We also quanfify the impact that different stellar population models and full spectral fitting routines have on the derived stellar population properties, and the radial gradient measurements. In our analysis, we find that age gradients tend to be shallow for both early-type and late-type galaxies. {\em Mass-weighted} age gradients of early-types are positive ($\sim 0.09\; {\rm dex}/R_{\rm e}$) pointing to "outside-in" progression of star formation, while late-type galaxies have negative {\em light-weighted} age gradients ($\sim -0.11\; {\rm dex}/R_{\rm e}$), suggesting an "inside-out" formation of discs. We detect negative metallicity gradients in both early and late-type galaxies, but these are significantly steeper in late-types, suggesting that radial dependence of chemical enrichment processes and the effect of gas inflow and metal transport are far more pronounced in discs. Metallicity gradients of both morphological classes correlate with galaxy mass, with negative metallicity gradients becoming steeper with increasing galaxy mass. The correlation with mass is stronger for late-type galaxies, with a slope of $d(\nabla [Z/H])/d(\log M)\sim -0.2\pm 0.05\;$, compared to $d(\nabla [Z/H])/d(\log M)\sim -0.05\pm 0.05\;$ for early-types. This result suggests that the merger history plays a relatively small role in shaping metallicity gradients of galaxies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.