Abstract

The inactivation and conformational changes of the bacterial chaperonin GroEL have been studied in SDS solutions with different concentrations. The results show that increasing the SDS concentration caused the intrinsic fluorescence emission intensity to increase and the emission peak to slightly blue-shift, indicating that increasing the SDS concentration can cause the hydrophobic surface to be slightly buried. The changes in the ANS-binding fluorescence with increasing SDS concentration also showed that the GroEL hydrophobic surface decreased. At low SDS concentrations, less than 0.3 mM, the GroEL ATPase activity increased with increasing SDS concentration. Increasing the SDS concentration beyond 0.3 mM caused the GroEL ATPase activity to quickly decrease. At high SDS concentrations, above 0.8 mM, the residual GroEL ATPase activity was less than 10% of the original activity, but the GroEL molecule maintained its native conformation (as indicated by the exposure of buried thiol groups, electrophoresis, and changes of CD spectra). The above results suggest that the conformational changes of the active site result in the inactivation of the ATPase even though the GroEL molecule does not markedly unfold at low SDS concentrations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call