Abstract

Hydroxysteroid dehydrogenases catalyze the NAD(P)(H)-dependent oxidoreduction of hydroxyl and oxo-functions at distinct positions of steroid hormones. This reversible reaction constitutes an important pre-receptor control mechanism for nuclear receptor ligands of the androgen, estrogen and glucocorticoid classes, since the conversion “switches” between receptor ligands and their inactive metabolites. The major reversible activities found in mammals acting on steroid hormones comprise 3α-, 11β- and 17β-hydroxysteroid dehydrogenases, and for each group several distinct isozymes have been described. The enzymes differ in their expression pattern, nucleotide cofactor preference, steroid substrate specificity and subcellular localization, and thus constitute a complex system ensuring cell-specific adaptation and regulation of steroid hormone levels. Several isoforms constitute promising drug targets, of particular importance in cancer, metabolic diseases, neurodegeneration and immunity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.