Abstract
<span style="font-family: T3Font_6; font-size: xx-small;"><span style="font-family: T3Font_6; font-size: xx-small;"><em> <span style="font-size: small;"> </span></em><p class="MsoNormal" style="margin: 0cm 0cm 0pt; text-align: justify;"><em><em style="mso-bidi-font-style: normal;"><span style="font-size: 11pt; mso-bidi-font-size: 10.0pt; mso-ansi-language: EN-US;" lang="EN-US">Formation control of multiple mobile robots is relatively a new area of robotics and increase the control performance and advantages of multiple mobile robots systems. <a name="OLE_LINK72">In this work we present a study concerning the modeling and formation control of a robotic system composed by two mobile robots, where one robot is the leader and the other is follower</a></span></em><em style="mso-bidi-font-style: normal;"><span style="font-size: 11pt; mso-bidi-font-size: 10.0pt; mso-ansi-language: EN-US;" lang="EN-US">. The system is a nonlinear dynamical system and cannot be controlled by traditional linear control techniques. The control strategy proposed is the SDRE (State-Dependent Riccati Equation) method. Simulations results with the software Matlab show the efficiency of the control method.</span></em></em></p><span style="font-size: small;"> </span></span></span>
Highlights
Formation control of multiple robots have drawn an extensive research attention in robotics and control community recently
In this work we study two mobile robots
The main advantages of formation control are reliability, adaptability, flexibility and perform complex missions and tasks that would be certainly impracticable for a single mobile robot
Summary
Formation control of multiple robots have drawn an extensive research attention in robotics and control community recently. The main approaches and strategies proposed in the literature for the formation control are virtual structure, behavior based and leader-follower [3],[12],[13]. SDRE BASED LEADER-FOLLOWER FORMATION CONTROL OF MULTIPLE MOBILE ROBOTS The strategy used in this work is the leader-follower approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.