Abstract

This paper discusses the need to accurately determine the population’s exposure to low-intensity radio-frequency electromagnetic fields (RF-EMF) from modern technologies like mobile networks, Wi-Fi, and IoT and proposes a practical solution for this assessment. There is no scientific consensus on the biological effects, mostly due to challenges in conducting accurate biological experiments. Recent research suggests that real-life exposure sources trigger stronger biological responses than laboratory-generated RF-EMF. However, there is a lack of research comparing the effects of these sources. This paper introduces a portable system for assessing and monitoring EMF exposure in urban areas. Employing a Software-Defined Radio (SDR) platform to ensure adaptability, the system incorporates two measurement configurations. The initial version concentrates on determining the average power within a 20 MHz Wi-Fi channel, whereas the subsequent configuration augments its functionality by introducing a frequency sweep. This sweep broadens the scrutinized bandwidth, thereby enriching the captured data content through the storage of spectrum sweeps corresponding to each average power value. These data can be used to create EMF profile maps based on individuals’ geographical coordinates. Compared to current limited-performance commercial exposimeters, the proposed system offers expanded capabilities by broadening the frequency bandwidth, georeferencing measurements, and storing data in an SQL database. Compared to high-performance commercial exposimeters, the major advantage of the system is its ability to detect short-term fluctuations in signal spectra and store the corresponding data for subsequent analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.