Abstract

In a real situation, optimization problems often involve uncertain parameters. Robust optimization is one of distribution-free methodologies based on worst-case analyses for handling such problems. In this paper, we first focus on a special class of uncertain linear programs (LPs). Applying the duality theory for nonconvex quadratic programs (QPs), we reformulate the robust counterpart as a semidefinite program (SDP) and show the equivalence property under mild assumptions. We also apply the same technique to the uncertain second-order cone programs (SOCPs) with "single" (not side-wise) ellipsoidal uncertainty. Then we derive similar results on the reformulation and the equivalence property. In the numerical experiments, we solve some test problems to demonstrate the efficiency of our reformulation approach. Especially, we compare our approach with another recent method based on Hildebrand's Lorentz positivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.