Abstract
In emerging multi-radio multi-channel wireless mesh networks (WMNs), how to allocate network resources to provide individual users with their fair rate share is a central but very complex issue due to their inherent multi-channel diversity and multi-hop connectivity. In this paper, we attempt to apply and extend a software-defined networking (SDN) approach to user-level fair resource allocation problems where both proportional fairness and max-min fairness are examined. We first mathematically formulate fair user resource allocation problems in multi-channel WMNs by seeking the maximization of objective functions under the network utility maximization framework. We then design both SDN controller-side and user device-side algorithms to solve the formulated problem in a centralized holistic manner. We apply the algorithms to control per-user link-layer rates according to a fairness criterion while we resort to traditional transport-layer congestion control for the regulation of individual flows for each user. For performance evaluation, we conduct a system-level simulation study to verify the convergence property of the proposed user fairness resource allocation solution and highlight the benefits of the SDN approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.