Abstract

We propose a novel, to our knowledge, resource allocation algorithm (RAA) for a multi-user non-orthogonal multiple access orthogonal frequency division multiplexing (NOMA-OFDM) visible light communication (VLC) system. The proposed algorithm considers both the interference between users and their channel diversity. Bit allocation to users in each iteration is based on the ratio between the already allocated number of bits and the demanded number of bits of users, rather than their channel gains. In this way, the inherent issue of prioritizing strong users in a conventional RAA is avoided. We implement a software-defined-network (SDN)-controlled VLC system with real-time signal generation to validate the proposed RAA. The allocation results in the SDN platform are used to configure a FPGA-based transmitter. Experiments of a two-user NOMA-OFDM system with 115-191 Mbit/s throughput show that the system can dynamically react to the change of data demand and channel responses of users. We further demonstrate that the proposed algorithm outperforms conventional RAAs regardless of the data demand, receiving angles, and distances of users.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.