Abstract

With the advent of new technologies, such as software-defined networks (SDN) and fog computing, and the development of communication technology and the vehicular industry, there has been a remarkable growth in intelligent transportation systems (ITS) in recent years. As a main component of ITS, vehicular ad hoc networks (VANETs) suffer from a host of problems, including architectural inflexibility, wireless communication instability, limited range of communications, and frequent topological changes due to the rapid mobility of vehicles. One of the challenges in vehicular ad hoc networks is the lack of efficient and reliable communication between vehicles. Also, given the huge amounts of data production and big data, the communication capabilities of vehicles can be utilized to effectively transmit and communicate data, thus reducing excessive bandwidth usage in internet networks and their infrastructure. The current paper’s aim is to present a method for improving the transmission of data packets in inter-vehicle communications. In this regard, software-defined networks and fog-based computing offer substantial benefits. The proposed routing method includes the switching of data packet transmission through the VANET infrastructure and internet transmission. SDN- and Fog computing-based Switchable Routing (SFSR) provides the best path for the inter-vehicle transmission of data packets. When data packet transmission via VANETs is not possible, transmission may be performed via internet. The results of the simulation indicate improved performance of SFSR in terms of the packet delivery ratio, packet loss ratio, end-to-end delay, routing overhead, and routing failure rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.