Abstract
인공지능 기술의 발전과 함께 네트워크 분야에서 라우팅 문제에 대해 강화학습(Reinforcement Learning)을 적용하는 연구들이 속속 등장하고 있다. 하지만 기본적인 강화학습 방법은 고정적인 환경을 가정하기 때문에 시간에 따라 변화하는 가변적인 네트워크 환경에서 성능에 한계를 가진다. 본 논문에서는 이러한 한계를 극복하고 SDN에서 가변적인 네트워크 환경을 잘 반영할 수 있는 심층 강화학습 기반의 멀티캐스트 라우팅 트리생성 방법을 제안한다. 본 논문에서 제안하는 방법을 평가하기 위해 다양한 네트워크 토폴로지에서 성능을 비교하는 실험을 진행하였다. 그 결과 네트워크 토폴로지가 고정된 환경에서 학습한 강화학습 에이전트보다 제안 방법으로 학습한 강화학습 에이전트가 다양한 네트워크 토폴로지에서도 보다 최적에 가까운 멀티캐스트 라우팅 트리를 생성함을 알 수 있었다.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of Korean Institute of Information Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.