Abstract
The orthogonal frequency division multiplexing (OFDM) radar suffers from severe performance degradation in range-velocity estimation in high mobility scenarios. In this paper, a novel intercarrier interference (ICI)-free parameter estimation method for OFDM radar is proposed. By employing a scale discrete Fresnel transform (SDFnT), the OFDM radar signals are converted to the scale Fresnel domain, and the orthogonality of subcarriers can be recovered with the optimal scale factor. Furthermore, due to the compatibility of the SDFnT and the discrete Fourier Transform (DFT), the proposed method has low computational complexity and high feasibility for OFDM radar implementation. Simulation results show that the proposed SDFnT-based scheme effectively eliminates the ICI effect for single and multiple targets and achieves high accuracy delay-Doppler estimation for OFDM radar systems in circumstances of high velocity and low SNR with consistency and robustness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.