Abstract

Rich geometric understanding of the world is an important component of many robotic applications such as planning and manipulation. In this paper, we present a modular pipeline for pose and shape estimation of objects from RGB-D images given their category. The core of our method is a generative shape model, which we integrate with a novel initialization network and a differentiable renderer to enable 6D pose and shape estimation from a single or multiple views. We investigate the use of discretized signed distance fields as an efficient shape representation for fast analysis-by-synthesis optimization. Our modular framework enables multi-view optimization and extensibility. We demonstrate the benefits of our approach over state-of-the-art methods in several experiments on both synthetic and real data. We open-source our approach at <uri xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">https://github.com/roym899/sdfest</uri> .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call