Abstract

Bone marrow mesenchymal stem cells (BMSCs) are thought to have great potential in the treatment of many diseases and may serve as a cell source for tissue engineering. These cells may be regulated by stromal cell-derived factor-1α (SDF-1α), which has been shown to promote the migration, proliferation, and osteogenic differentiation of BMSCs in inflammation-associated diseases. However, the specific mechanism underlying this process remains unclear. We herein transduced lentivirus carrying SDF-1α, empty vector, or siRNA-SDF-1α into mouse BMSCs and then performed transwell, CCK-8, cell cycle, alkaline phosphatase activity, and Alizarin Red staining experiments on the three groups of samples. Overexpression of SDF-1α promoted the migration, proliferation, and osteogenic differentiation of BMSCs, and SDF-1α upregulated the expression of Wnt pathway-related factors and downstream target genes as determined by western blot, real-time polymerase chain reaction, and immunofluorescence. The effect of low SDF-1α expression on BMSCs was significantly weakened. In addition, we transduced lentivirus carrying siRNA-Wnt3a into BMSCs and treated them with SDF-1 drugs. After inhibiting the Wnt pathway, SDF-1 significantly weakened the migration, proliferation, and osteogenic differentiation of BMSCs. From this, we concluded that high SDF-1 expression can promote the migration, proliferation, and osteogenic differentiation of BMSCs, at least in part by activating the Wnt pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call