Abstract

The neurohypophyseal hormone oxytocin plays a role in stimulation of neurogenesis in the adult brain. However, the exact role of oxytocin in neural development is still not well understood. In the present study, we evaluated the effect of oxytocin on neural differentiation of mouse adipose tissue-derived stem cells (ADSCs). For this purpose, ADSCs were cultured in a medium containing Knockout™ Serum Replacement (KoSR) and treated with different concentrations of oxytocin at the first or eighth day of differentiation. Two weeks after neural induction, ADSCs expressed several early and late neuron-specific genes and proteins. MTT assay and cell cycle analysis revealed a stimulatory effect of oxytocin on viability and proliferation of differentiating ADSCs. As detected by quantitative real-time PCR, treatment of the ADSCs with low concentrations of oxytocin induced neurogenesis. Oxytocin treatment also upregulated the expression of oxytocin receptor mRNA. These results demonstrated for the first time that oxytocin treatment can promote neural differentiation of the ADSCs in a dose-dependent and time-dependent manner. Oxytocin has a significant role in neurogenesis, and this may have implications in regeneration of adult neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.