Abstract
Single-cell RNA sequencing (scRNA-seq) has become a valuable tool for studying cellular heterogeneity. However, the analysis of scRNA-seq data is challenging because of inherent noise and technical variability. Existing methods often struggle to simultaneously explore heterogeneity across cells, handle dropout events, and account for batch effects. These drawbacks call for a robust and comprehensive method that can address these challenges and provide accurate insights into heterogeneity at the single-cell level. In this study, we introduce scVIC, an algorithm designed to account for variational inference, while simultaneously handling biological heterogeneity and batch effects at the single-cell level. scVIC explicitly models both biological heterogeneity and technical variability to learn cellular heterogeneity in a manner free from dropout events and the bias of batch effects. By leveraging variational inference, we provide a robust framework for inferring the parameters of scVIC. To test the performance of scVIC, we employed both simulated and biological scRNA-seq datasets, either including, or not, batch effects. scVIC was found to outperform other approaches because of its superior clustering ability and circumvention of the batch effects problem. The code of scVIC and replication for this study are available at https://github.com/HiBearME/scVIC/tree/v1.0.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.