Abstract

To provide a basis for promising exosome-based therapies against intervertebral disc degeneration (IDD), our present research aimed to identify a mechanism underlying the vesicle release from nucleus pulposus cells (NPCs). Scutellarin (SC) is a natural chemotherapeutic agent isolated from Erigeron breviscapus with a variety of biological activities. Here, we observed the significantly elevated autophagy levels in rat NPCsunder the stimulation of SC, leading to a concomitant enhancement of intracellular vesicle release, which could be attributed to the inactivation of the phosphoinositide 3-kinase(PI3K)/phosphatase and tensin homolog(PTEN)/protein kinase B (Akt) pathway. To ensure that exosome release was driven by SC via the autophagic pathway, we implemented gain-of-function and loss-of-function studies by additionally using insulin-like growth factor-1 (IGF-1) and small-interfering RNAof autophagy-related gene 5 (ATG5), and the exosome secretion decreased in the case of attenuated autophagy. Evidently, the treatment with SC exerted the remarkable upregulation of Rab8a through the overexpression of ATG5. After the respective knockdown of ATG5 and Rab8a, the increased release of exosomes induced by SC was reversed, whereas the number of intracellular vesicles was restored. Overall, it can be concluded that SC contributes to the autophagy activation in NPCs by acting on the PI3K/PTEN/Akt pathway, which upregulates the expression of Rab8a and promotes the release of exosomes, inspiring novel therapeutic strategies in preventing IDD that might be fruitfully investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call